Comparison of model reliabilities from single-step and bivariate blending methods

Matti Taskinen¹
Esa A. Mäntysaari¹ Martin H. Lidauer¹ Timo Knürr¹
Jukka Pösö² Guosheng Su³ Gert P. Aamand⁴
Ismo Strandén¹

¹MTT Agrifood Research Finland, ²FABA, ³Aarhus University, ⁴Nordisk Avlsværdivurdering

2013 Interbull Meeting - Nantes, France
Background

- Increasing interest on estimation of **model reliability in genomic evaluations**:
 - Differences exist: range from pedigree accuracy to accuracy of full progeny test
 - Reliability is needed as weights for international genomic evaluations

- **GBLUP**: the model based reliability is computed through inversion of MME
 - If G^{-1} can be formed then also $(MME)^{-1}$ can be done (MME is size `genotyped animals`)

- In the future genomic evaluations are mostly based on **single-step BLUP (ssGBLUP)**
 - Exact model based reliability estimation requires to invert a matrix of size `all animals`
 - approximations have been suggested by Misztal et al. 2013 based on added genomic information into MME
Background

- Increasing interest on estimation of **model reliability in genomic evaluations:**
 - Differences exist: range from pedigree accuracy to accuracy of full progeny test
 - Reliability is needed as weights for international genomic evaluations
- **GBLUP:** the model based reliability is computed through inversion of MME
 - If G^{-1} can be formed then also $(MME)^{-1}$ can be done (MME is size genotyped animals)
- In the future genomic evaluations are mostly based on **single-step BLUP** (ssGBLUP)
 - Exact model based reliability estimation requires to invert a matrix of size all animals
 - approximations have been suggested by Misztal et al. 2013 based on added genomic information into MME
Background

• Increasing interest on estimation of **model reliability in genomic evaluations**:
 • Differences exist: range from pedigree accuracy to accuracy of full progeny test
 • Reliability is needed as weights for international genomic evaluations

• **GBLUP**: the model based reliability is computed through inversion of MME
 • If G^{-1} can be formed then also $(MME)^{-1}$ can be done (MME is size genotyped animals)

• In the future genomic evaluations are mostly based on **single-step BLUP** (ssGBLUP)
 • Exact model based reliability estimation requires to invert a matrix of size all animals
 • approximations have been suggested by Misztal et al. 2013 based on added genomic information into MME
Background
Estimation of reliability for single-step model

- Nordic genomic evaluations: DGV\(^1\) and pedigree are combined using bivariate blending
 - Bivariate blending (Mäntysaari and Strandén, 2010) treats DGV as a correlated trait with 100% accuracy, with a correlation of \(\sqrt{R^2_{DGV}}\) to “trait”
 - Original bivariate blending was revised for this study (as will be presented)

- We wanted to compare model-based reliability computed from the full inverse of MME using models:
 - animal model BLUP (AM-BLUP)
 - single-step BLUP (ssGBLUP)
 - bivariate blending using GBLUP (bbGBLUP)

\(^1\)Direct Genomic Value
Background

Estimation of reliability for single-step model

- Nordic genomic evaluations: DGV\(^1\) and pedigree are combined using bivariate blending
 - **Bivariate blending** (Mäntysaari and Strandén, 2010) treats DGV as a correlated trait w. 100% accuracy, with a correlation of \(\sqrt{R^2_{DGV}}\) to “trait”
 - Original bivariate blending was **revised** for this study (as will be presented)

- We wanted to compare model based **reliability** computed from the **full inverse of MME** using models:
 - animal model BLUP (AM-BLUP)
 - single-step BLUP (ssGBLUP)
 - bivariate blending using GBLUP (bbGBLUP)

\(^{1}\)Direct Genomic Value
Background

Estimation of reliability for single-step model

- Nordic genomic evaluations: DGV1 and pedigree are combined using bivariate blending
 - Bivariate blending (Mäntysaari and Strandén, 2010) treats DGV as a correlated trait w. 100% accuracy, with a correlation of $\sqrt{R_{DGV}^2}$ to “trait”
 - Original bivariate blending was revised for this study (as will be presented)
- We wanted to compare model based reliability computed from the full inverse of MME using models:
 - animal model BLUP (AM-BLUP)
 - single-step BLUP (ssGBLUP)
 - bivariate blending using GBLUP (bbGBLUP)

1Direct Genomic Value
Background
Estimation of reliability for single-step model

• Nordic genomic evaluations: DGV\(^1\) and pedigree are combined using bivariate blending

 • **Bivariate blending** (Mäntysaari and Strandén, 2010) treats DGV as a correlated trait w. 100% accuracy, with a correlation of \(\sqrt{R^2_{DGV}}\) to “trait”

 • Original bivariate blending was revised for this study (as will be presented)

• We wanted to compare model based reliability computed from the full inverse of MME using models:

 • animal model BLUP (AM-BLUP)

 • single-step BLUP (ssGBLUP)

 • bivariate blending using GBLUP (bbGBLUP)

\(^1\)Direct Genomic Value
Model reliability: \(y = Xb + Zu + e \)

Inverse of the coefficient matrix of the MME:

\[
C^{-1} = \begin{bmatrix}
C_{b,b} & C_{b,u} \\
C_{u,b} & C_{u,u}
\end{bmatrix}
= \begin{bmatrix}
X' R^{-1} X & X' R^{-1} Z \\
Z' R^{-1} X & Z' R^{-1} Z + V_u^{-1}
\end{bmatrix}^{-1}
\]

AM-BLUP: \(V_u^{-1} = \frac{1}{\sigma_u^2} A^{-1} \)

ssGBLUP: \(V_u^{-1} = \frac{1}{\sigma_u^2} \left[A^{-1} + \begin{bmatrix}
0 & 0 \\
0 & G^{-1} - (A_{22})^{-1}
\end{bmatrix} \right] \)

where

- \(A = \) pedigree based relationship matrix
- \(G = \) genomic relationship matrix
- \(A_{22} = \) pedigree based relationships of genotyped animals

Reliability for animal \(i \):

\[
r_i^2 = 1 - \frac{\{C_{u,u}\}_i}{\sigma_u^2}
\]

where \(\{C_{u,u}\}_i \) is diagonal element corresponding to animal \(i \).
Model reliability: \(y = Xb + Zu + e \)

Inverse of the coefficient matrix of the MME:

\[
C^{-1} = \begin{bmatrix}
C^{b,b} & C^{b,u} \\
C^{u,b} & C^{u,u}
\end{bmatrix} = \begin{bmatrix}
X'R^{-1}X & X'R^{-1}Z \\
Z'R^{-1}X & Z'R^{-1}Z + V_u^{-1}
\end{bmatrix}^{-1}
\]

AM-BLUP: \(V_u^{-1} = \frac{1}{\sigma_u^2} A^{-1} \)

ssGBLUP: \(V_u^{-1} = \frac{1}{\sigma_u^2} \left[A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G^{-1} - (A_{22})^{-1} \end{bmatrix} \right] \)

where

- \(A = \) pedigree based relationship matrix
- \(G = \) genomic relationship matrix
- \(A_{22} = \) pedigree based relationships of genotyped animals

Reliability for animal \(i \):

\[
r_i^2 = 1 - \frac{\{C^{u,u}\}_i}{\sigma_u^2}
\]

where \(\{C^{u,u}\}_i \) is diagonal element corresponding animal \(i \).
Steps in bivariate blending bbGBLUP

- **Step 1:** get reliabilities from AM-BLUP \(\Rightarrow r^2_{EBV} \)

- **Step 2:** reliability increase due to genotypes
 - \(EDC^2 \) for all genotyped animals:
 - bull EDC based on non-genotyped daughters
 - cow EDC is \(\sigma^2_e r^2_o / \sigma^2_e (1 - r^2_o) \) where \(r^2_o = \) individual Interbull reliability
 - get reliabilities from GBLUP \(\Rightarrow r^2_{DGV} \)
 - use EDC from as weight in GBLUP
 - calculate relative increase in evaluation accuracy due to GBLUP for genotyped animals:
 \[
 EDC_G = \frac{r^2_{DGV}}{1 - r^2_{DGV}} - \frac{r^2_{EBV}}{1 - r^2_{EBV}}
 \]
 - calculate accuracy of added value due to DGV:
 \[
 r_a = \sqrt{1 - \frac{1}{EDC_G + 1}}
 \]

\(^2\)Effective Daughter Contribution
Steps in bivariate blending bbGBLUP

- **Step 1**: get reliabilities from AM-BLUP ⇒ \(r_{EBV}^2 \)
- **Step 2**: **reliability increase** due to genotypes
 - EDC\(^2\) for all genotyped animals:
 - bull EDC based on non-genotyped daughters
 - cow EDC is \(\frac{\sigma_e^2 r_o^2}{\sigma_u^2 (1-r_o^2)} \) where \(r_o^2 = \) individual Interbull reliability
 - get reliabilities from GBLUP ⇒ \(r_{DGV}^2 \)
 - use EDC from as weight in GBLUP
 - calculate **relative increase in evaluation accuracy** due to GBLUP for genotyped animals:
 \[
 EDC_G = \frac{r_{DGV}^2}{1 - r_{DGV}^2} - \frac{r_{EBV}^2}{1 - r_{EBV}^2}
 \]
 - calculate accuracy of added value due to DGV:
 \[
 r_a = \sqrt{1 - \frac{1}{EDC_G + 1}}
 \]

\(^2\)Effective Daughter Contribution
Steps in bivariate blending bbGBLUP

• **Step 1**: get reliabilities from AM-BLUP ⇒ r^2_{EBV}

• **Step 2**: **reliability increase** due to genotypes

 • EDC^2 for all genotyped animals:
 - bull EDC based on non-genotyped daughters
 - cow EDC is $\frac{\sigma^2_e r^2_o}{\sigma^2_o (1 - r^2_o)}$ where $r^2_o = $ individual Interbull reliability

 • get reliabilities from GBLUP ⇒ r^2_{DGV}

 • use EDC from as weight in GBLUP

• calculate **relative increase in evaluation accuracy** due to GBLUP for genotyped animals:

 \[EDC_G = \frac{r^2_{DGV}}{1 - r^2_{DGV}} - \frac{r^2_{EBV}}{1 - r^2_{EBV}} \]

 • calculate accuracy of added value due to DGV:

 \[r_a = \sqrt{1 - \frac{1}{EDC_G + 1}} \]

2Effective Daughter Contribution
Steps in bivariate blending bbGBLUP

• **Step 1**: get reliabilities from AM-BLUP ⇒ r_{EBV}^2

• **Step 2**: reliability increase due to genotypes
 - EDC2 for all genotyped animals:
 - bull EDC based on non-genotyped daughters
 - cow EDC is $\frac{\sigma_e^2 r_o^2}{\sigma_u^2 (1 - r_o^2)}$ where $r_o^2 =$ individual Interbull reliability

 - get reliabilities from GBLUP ⇒ r_{DGV}^2
 - use EDC from as weight in GBLUP

 - calculate relative increase in evaluation accuracy due to GBLUP for genotyped animals:
 \[
 \text{EDC}_G = \frac{r_{DGV}^2}{1 - r_{DGV}^2} - \frac{r_{EBV}^2}{1 - r_{EBV}^2}
 \]

 - calculate accuracy of added value due to DGV:
 \[
 r_a = \sqrt{1 - \frac{1}{\text{EDC}_G + 1}}
 \]

2Effective Daughter Contribution
Steps in bivariate blending bbGBLUP

• **Step 1**: get reliabilities from AM-BLUP ⇒ r^2_{EBV}

• **Step 2**: **reliability increase** due to genotypes
 - EDC^2 for all genotyped animals:
 - bull EDC based on non-genotyped daughters
 - cow EDC is $\frac{\sigma^2_e r^2_o}{\sigma^2_g(1-r^2_o)}$ where r^2_o = individual Interbull reliability
 - get reliabilities from GBLUP ⇒ r^2_{DGV}
 - use EDC from as weight in GBLUP
 - calculate **relative increase in evaluation accuracy** due to GBLUP for genotyped animals:
 $$EDC_G = \frac{r^2_{DGV}}{1 - r^2_{DGV}} - \frac{r^2_{EBV}}{1 - r^2_{EBV}}$$

• calculate accuracy of added value due to DGV:
 $$r_a = \sqrt{1 - \frac{1}{EDC_G + 1}}$$

2Effective Daughter Contribution
Steps in bivariate blending bbGBLUP

• **Step 1**: get reliabilities from AM-BLUP ⇒ r_{EBV}^2

• **Step 2**: **reliability increase** due to genotypes

 • EDC2 for all genotyped animals:

 - bull EDC based on non-genotyped daughters
 - cow EDC is $\frac{\sigma_e^2 r_o^2}{\sigma_u^2 (1 - r_o^2)}$ where $r_o^2 =$ individual Interbull reliability

 • get reliabilities from GBLUP ⇒ r_{DGV}^2

 - use EDC from as weight in GBLUP

 • calculate **relative increase in evaluation accuracy** due to GBLUP for genotyped animals:

 $EDC_G = \frac{r_{DGV}^2}{1 - r_{DGV}^2} - \frac{r_{EBV}^2}{1 - r_{EBV}^2}$

 • calculate accuracy of added value due to DGV:

 $r_a = \sqrt{1 - \frac{1}{EDC_G + 1}}$

2Effective Daughter Contribution
bbGBLUP continued

• **Step 3:**
 • bivariate blending model by **random regression** AM-BLUP:

\[y = Xb + K_1 u_1 + K_2 u_2 + e \]

Solutions in \(u_1 \) have GEBV.

• Values in design matrices \(K \) and weights depend on type of the observation. When observation is:
 • same DRP as in AM-BLUP
 \[
 \begin{bmatrix}
 k_1 \\
 k_2
 \end{bmatrix} = \begin{bmatrix}
 1 \\
 0
 \end{bmatrix}, \text{ weights same as in AM-BLUP}
 \]
 • genomic estimate DGV from GBLUP:
 \[
 \begin{bmatrix}
 k_1 \\
 k_2
 \end{bmatrix} = \begin{bmatrix}
 \sqrt{r_a^2} \\
 \sqrt{1 - r_a^2}
 \end{bmatrix}, \text{ weights very large (1000)}
 \]

• Variances: \(\text{Var}(u_i) = \sigma^2 u A, i = 1, 2 \) where \(\sigma^2 u \) is from AM-BLUP.
bbGBLUP continued

- **Step 3:**
 - bivariate blending model by *random regression* AM-BLUP:

 \[
 y = Xb + K_1 u_1 + K_2 u_2 + e
 \]

 Solutions in \(u_1 \) have GEBV.
 - Values in design matrices \(K \) and weights depend on type of the observation. When observation is:
 - same DRP as in AM-BLUP
 \[
 \begin{bmatrix}
 k_1 \\
 k_2
 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad \text{weights same as in AM-BLUP}
 \]
 - genomic estimate DGV from GBLUP:
 \[
 \begin{bmatrix}
 k_1 \\
 k_2
 \end{bmatrix} = \begin{bmatrix} \sqrt{r_a^2} & \sqrt{1 - r_a^2} \end{bmatrix}, \quad \text{weights very large (1000)}
 \]
 - Variances: \(\text{Var}(u_i) = \sigma_u^2 A, i = 1, 2 \) where \(\sigma_u^2 \) is from AM-BLUP.
bbGBLUP continued

• **Step 3:**
 - bivariate blending model by *random regression* AM-BLUP:
 \[
 y = Xb + K_1 u_1 + K_2 u_2 + e
 \]

 Solutions in \(u_1 \) have GEBV.

 - Values in design matrices \(K \) and weights depend on type of the observation. When observation is:
 - same DRP as in AM-BLUP
 \[
 [k_1 \quad k_2] = [1 \quad 0], \quad \text{weights same as in AM-BLUP}
 \]
 - genomic estimate DGV from GBLUP:
 \[
 [k_1 \quad k_2] = \left[\frac{\sqrt{r_a^2}}{\sqrt{1 - r_a^2}} \right], \quad \text{weights very large (1000)}
 \]

 - Variances: \(\text{Var} (u_i) = \sigma_u^2 A, i = 1, 2 \) where \(\sigma_u^2 \) is from AM-BLUP.
bbGBLUP continued

• **Step 3:**
 • bivariate blending model by **random regression** AM-BLUP:
 \[y = Xb + K_1 u_1 + K_2 u_2 + e \]

 Solutions in \(u_1 \) have GEBV.

 • Values in design matrices \(K \) and weights depend on type of the observation. When observation is:
 • same DRP as in AM-BLUP
 \[
 \begin{bmatrix}
 k_1 \\
 k_2
 \end{bmatrix} =
 \begin{bmatrix}
 1 \\
 0
 \end{bmatrix}, \quad \text{weights same as in AM-BLUP}
 \]
 • genomic estimate DGV from GBLUP:
 \[
 \begin{bmatrix}
 k_1 \\
 k_2
 \end{bmatrix} =
 \begin{bmatrix}
 \sqrt{r_a^2} \\
 \sqrt{1 - r_a^2}
 \end{bmatrix}, \quad \text{weights very large (1000)}
 \]

 • Variances: \(\text{Var}(u_i) = \sigma_U^2 A, i = 1, 2 \) where \(\sigma_U^2 \) is from AM-BLUP.
bbGBLUP continued

- **Step 3:**
 - bivariate blending model by *random regression* AM-BLUP:
 \[y = Xb + K_1 u_1 + K_2 u_2 + e \]

 Solutions in \(u_1 \) have GEBV.

- **Values in design matrices** \(K \) and weights depend on type of the observation. When observation is:
 - same DRP as in AM-BLUP
 \[\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \text{ weights same as in AM-BLUP} \]
 - genomic estimate DGV from GBLUP:
 \[\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} \sqrt{r_a^2} \\ \sqrt{1 - r_a^2} \end{bmatrix}, \text{ weights very large (1000)} \]

- **Variances:** \(\text{Var}(u_i) = \sigma^2_u A, i = 1, 2 \) where \(\sigma^2_u \) is from AM-BLUP.
Data

- Study data was extracted from the **production trait evaluation** of Nordic Red dairy cattle
- For simplicity **deregressed proofs** (DRP) were assumed
- NOTE: actual phenotypic data (DRP) were not used! Only the EDCs and pedigree
- We assumed $h^2 = 0.50$
- **Genotype information**: after edits, 38194 SNPs from BovineSNP50
Data

• Study data was extracted from the production trait evaluation of Nordic Red dairy cattle

• For simplicity deregressed proofs (DRP) were assumed
• NOTE: actual phenotypic data (DRP) were not used! Only the EDCs and pedigree

• We assumed $h^2 = 0.50$

• Genotype information: after edits, 38194 SNPs from BovineSNP50
Study data was extracted from the production trait evaluation of Nordic Red dairy cattle.

For simplicity, deregressed proofs (DRP) were assumed.

NOTE: actual phenotypic data (DRP) were not used! Only the EDCs and pedigree.

We assumed $h^2 = 0.50$

Genotype information: after edits, 38194 SNPs from BovineSNP50.
Data

- Study data was extracted from the **production trait evaluation** of Nordic Red dairy cattle
- For simplicity **deregressed proofs** (DRP) were assumed
- NOTE: actual phenotypic data (DRP) were not used! Only the EDCs and pedigree
- We assumed $h^2 = 0.50$
- **Genotype information**: after edits, 38194 SNPs from BovineSNP50
Numbers

- **Genotyped animals:**
 - **Training** animals: genotyped bulls born 2001-2005
 - **Candidates**: genotyped animals born 2006-

- Number of training bulls (genotyped): 1055

- Daughters (w. records) to the training bulls were searched
 - “Best” 522 bulls: 40 daughters
 - “Average” 533 bulls: 10 daughters
 - Total number of daughters for these bulls 26060

- Number of candidate animals (genotyped): 1830
 - 607 candidate bulls
 - 1223 candidate cows w. records

- Pedigree for all above animals were traced but limited to 2 generations → **73579** animals in AM-BLUP
 - From which 67648 cows with records
Numbers

• Genotyped animals:
 • **Training** animals: genotyped bulls born 2001-2005
 • **Candidates**: genotyped animals born 2006-

• Number of **training bulls** (genotyped): **1055**
 • Daughters (w. records) to the training bulls were searched
 • “Best” 522 bulls: 40 daughters
 • “Average” 533 bulls: 10 daughters
 • Total number of daughters for these bulls 26060

• Number of candidate animals (genotyped): **1830**
 • 607 candidate bulls
 • 1223 candidate cows w. records

• Pedigree for all above animals were traced but limited to 2 generations → **73579** animals in AM-BLUP
 • From which 67648 cows with records
Numbers

- Genotyped animals:
 - Training animals: genotyped bulls born 2001-2005
 - Candidates: genotyped animals born 2006-

- Number of training bulls (genotyped): 1055

- Daughters (w. records) to the training bulls were searched
 - “Best” 522 bulls: 40 daughters
 - “Average” 533 bulls: 10 daughters
 - Total number of daughters for these bulls 26060

- Number of candidate animals (genotyped): 1830
 - 607 candidate bulls
 - 1223 candidate cows w. records

- Pedigree for all above animals were traced but limited to 2 generations → 73579 animals in AM-BLUP
 - From which 67648 cows with records
Numbers

• Genotyped animals:
 • Training animals: genotyped bulls born 2001-2005
 • Candidates: genotyped animals born 2006-

• Number of training bulls (genotyped): 1055

• Daughters (w. records) to the training bulls were searched
 • “Best” 522 bulls: 40 daughters
 • “Average” 533 bulls: 10 daughters
 • Total number of daughters for these bulls 26060

• Number of candidate animals (genotyped): 1830
 • 607 candidate bulls
 • 1223 candidate cows w. records

• Pedigree for all above animals were traced but limited to 2 generations → 73579 animals in AM-BLUP
 • From which 67648 cows with records
Numbers

- **Genotyped animals:**
 - *Training* animals: genotyped bulls born 2001-2005
 - *Candidates*: genotyped animals born 2006-

- Number of *training bulls* (genotyped): 1055

- Daughters (w. records) to the training bulls were searched
 - “Best” 522 bulls: 40 daughters
 - “Average” 533 bulls: 10 daughters
 - Total number of daughters for these bulls 26060

- Number of candidate animals (genotyped): 1830
 - 607 candidate bulls
 - 1223 candidate cows w. records

- Pedigree for all above animals were traced but limited to 2 generations → **73579** animals in AM-BLUP
 - From which 67648 cows with records
Summary of Setup

• Three **methods**:
 • Animal model
 • Single-step
 • Bivariate blending

• Five **animal groups** examined:
 • Genotyped:
 • Training bulls
 • Candidate bulls
 • Candidate cows
 • Non-genotyped: (not interested, skipped)
 • bulls
 • cows

• Comparing **reliabilities**
Summary of Setup

• Three **methods**:
 • Animal model
 • Single-step
 • Bivariate blending

• Five **animal groups** examined:
 • Genotyped:
 • Training bulls
 • Candidate bulls
 • Candidate cows
 • Non-genotyped: (not interested, skipped)
 • bulls
 • cows

• Comparing **reliabilities**
Summary of Setup

• Three **methods**:
 - Animal model
 - Single-step
 - Bivariate blending

• Five **animal groups** examined:
 - Genotyped:
 - Training bulls
 - Candidate bulls
 - Candidate cows
 - Non-genotyped: (not interested, skipped)
 - bulls
 - cows

• Comparing **reliabilities**
Results: Animal model vs. Single-step

- **X-axis:** reliability of Animal model for each animal
- **Y-axis:** reliability of Single-step for each animal
- Dots on diagonal: no difference in reliabilities.
- Training bulls: about the same reliabilities.
- Candidate cows: Single-step reliabilities are higher.
- Candidate bulls:
 - Single-step reliabilities are clearly higher.
 - Cows have observations ⇒ reliabilities higher.

Training bulls

 mean(Y-X) Corr

0.02 0.99

X-axis: reliability of Animal model for each animal
Y-axis: reliability of Single-step for each animal
Dots on diagonal: no difference in reliabilities.
Training bulls: about the same reliabilities.
Candidate cows: Single-step reliabilities are higher.
Candidate bulls:
 - Single-step reliabilities are clearly higher.
 - Cows have observations ⇒ reliabilities higher.
Results: Animal model vs. Single-step

- **X-axis**: reliability of Animal model for each animal
- **Y-axis**: reliability of Single-step for each animal
- Dots on diagonal: no difference in reliabilities.
- Training bulls: about the same reliabilities.
- Candidate cows: Single-step reliabilities are higher.
- Candidate bulls:
 - Single-step reliabilities are clearly higher.
 - Cows have observations ⇒ reliabilities higher.
Results: Animal model vs. Single-step

- X-axis: reliability of Animal model for each animal
- Y-axis: reliability of Single-step for each animal
- Dots on diagonal: no difference in reliabilities.
- Training bulls: about the same reliabilities.
- Candidate cows: Single-step reliabilities are higher.
- Candidate bulls:
 - Single-step reliabilities are clearly higher.
 - Cows have observations ⇒ reliabilities higher.
Results: Animal model vs. Single-step

- **X-axis**: reliability of Animal model for each animal
- **Y-axis**: reliability of Single-step for each animal
- Dots on **diagonal**: no difference in reliabilities.
- Training bulls: about the same reliabilities.
- Candidate cows: Single-step reliabilities are higher.
- Candidate bulls:
 - Single-step reliabilities are clearly higher.
 - Cows have observations ⇒ reliabilities higher.
Results: Animal model vs. Bivariate blending

- Now: **Y-axis** has reliabilities of **Bivariate blending**
- Bivariate blending reliabilities are also higher than Animal model
Results: Animal model vs. Bivariate blending

- Now: Y-axis has reliabilities of Bivariate blending
- Bivariate blending reliabilities are also higher than Animal model
Results: Animal model vs. Bivariate blending

- Now: Y-axis has reliabilities of Bivariate blending
- Bivariate blending reliabilities are also higher than Animal model
Results: Single-step vs. Bivariate blending

- Now: comparing **Single-step** (X-axis) and **Bivariate blending** (Y-axis)

- Bivariate blending reliabilities are **lower** than Single-step
Results: Single-step vs. Bivariate blending

- Now: comparing **Single-step** (X-axis) and **Bivariate blending** (Y-axis)

- Bivariate blending reliabilities are **lower** than Single-step
Results: Single-step vs. Bivariate blending

- Now: comparing Single-step (X-axis) and Bivariate blending (Y-axis)

- Bivariate blending reliabilities are lower than Single-step
Conclusions

• Bivariate blending was computationally **lighter** than Single-step in reliability calculation due to better **sparsity** — and can use standard software used for AM-BLUP

• Genomic reliabilities in single-step GBLUP **increased** — due to genomic information
 • also in bivariate blending

• In general bivariate blending reliability estimates were **lower** than single-step

• Bivariate blending **avoided double counting** of relationship information ⇒ uses less information
Conclusions

• Bivariate blending was computationally **lighter** than Single-step in reliability calculation due to better **sparsity** — and can use standard software used for AM-BLUP

• Genomic reliabilities in single-step GBLUP **increased** — due to genomic information
 • also in bivariate blending

• In general bivariate blending reliability estimates were **lower** than single-step

• Bivariate blending **avoided double counting** of relationship information ⇒ uses less information
Conclusions

• Bivariate blending was computationally **lighter** than Single-step in reliability calculation due to better **sparsity** — and can use standard software used for AM-BLUP

• Genomic reliabilities in single-step GBLUP **increased** — due to genomic information
 • also in bivariate blending

• In general bivariate blending reliability estimates were **lower** than single-step

• Bivariate blending **avoided double counting** of relationship information ⇒ uses less information
Conclusions

• Bivariate blending was computationally lighter than Single-step in reliability calculation due to better sparsity — and can use standard software used for AM-BLUP

• Genomic reliabilities in single-step GBLUP increased — due to genomic information
 • also in bivariate blending

• In general bivariate blending reliability estimates were lower than single-step

• Bivariate blending avoided double counting of relationship information ⇒ uses less information
Conclusions

• Bivariate blending was computationally lighter than Single-step in reliability calculation due to better sparsity — and can use standard software used for AM-BLUP

• Genomic reliabilities in single-step GBLUP increased — due to genomic information
 • also in bivariate blending

• In general bivariate blending reliability estimates were lower than single-step

• Bivariate blending avoided double counting of relationship information ⇒ uses less information
Acknowledgements

- Nordic genomic selection project (VikingGenetics, Aarhus University, NAV, FABA, Svensk Mjölk (Växa Sverige)) provided the genotypes
- NAV and FABA provided the data